데이터 예측을 위한 통계적 방법 비교 및 활용

  • 2662
  • 138
Metadata Downloads
Research report
Issued Date
미래예측예측방법시계열머신러닝신경망HIRAHealth Insurance Review & AssessmentMachine learningForecasting
Healthcare data forecasting is used in a variety of fields, including policy evaluation, health insurance financial estimation, and the detection of unusual claims symptoms.
Furthermore, the evidence generated by the predictive model is critical in the development of health policies and decision-making processes.
As a result, the prediction process must be scientific and systematic, and accuracy measures should be a key selection criterion for forecasting methods.
By examining the data prediction methods used in the health care field as well as the most recent forecasting techniques, we attempted to suggest a forecasting method suitable for the characteristics of healthcare data in this study.
To that end, a literature review, investigations on the most recent forecasting methodologies, and a comparative analysis of forecasting performance based on data type were performed. And the results of the
analysis were synthesized to suggest a forecasting method appropriate for the type of healthcare data.
The subject of forecasting method review included regression models, time series models, and machine learning. The data types were separated into continuous variables and count variables, and data sets of 12, 24,
and 30 sizes were created.
Health insurance claim data was used to compare forecasting performance, and SAS and Python were used as analysis tools.
According to the findings, the machine learning forecasting method performed best for both continuous and count data types, while the ARIMA, time series analysis method performed reasonably well for continuous variables. Forecasting performance improved as the number of data points increased. In this study, we recommend a sample size of at least 30 subjects.
This research is anticipated to help in the selection of an appropriate forecasting method for performing complex prediction tasks.
Alternative Title
Comparison and utilization of statistical methods for data forecasting.
Table Of Contents
요 약 ----------------------------- ⅰ

제1장 서 론 ----------------------------- 1
1. 연구 배경 ----------------------------- 1
2. 연구 목적 ----------------------------- 1
3. 연구 내용 및 방법 ----------------------------- 2

제2장 예측방법 개요 ----------------------------- 5
1. 예측 관련 업무 적용 현황 ----------------------------- 5
가. 급여정보분석 업무 ----------------------------- 5
나. 정책효과 연구 ----------------------------- 6
2. 예측개념 ----------------------------- 8
가. 일반 예측 ----------------------------- 8
나. 미래 예측 ----------------------------- 9
다. 추계 예측 ----------------------------- 9
3. 예측방법 동향 ----------------------------- 11
가. 자료 특성, 유형에 따른 예측방법 ----------------------------- 11
나. 다빈도 예측방법 ----------------------------- 14

제3장 예측방법 ----------------------------- 17
1. 회귀 모형(다항 추세모형) ----------------------------- 17
2. 시계열 모형 ----------------------------- 19
가. 개요 ----------------------------- 19
나. ARMA ----------------------------- 19
다. ARIMA ----------------------------- 22
라. ARIMAX ----------------------------- 24
마. 지수평활법 ----------------------------- 26
바. 자기회귀오차모형 ----------------------------- 28
3. 머신러닝(신경망) 모형 ----------------------------- 30
4. 일반화선형 모형(카운트형 자료) ----------------------------- 36

제4장 건강보험 청구자료를 활용한 사례분석 ----------------------------- 39
1. 분석 방법 ----------------------------- 39
2. 분석 대상 ----------------------------- 39
가. 자료 유형 ----------------------------- 39
나. 예측 방법 ----------------------------- 40
다. 예측 정확도 측도 ----------------------------- 41
라. 예측모형 적합도 측도 ----------------------------- 42
3. 초음파 급여비 사례분석 ----------------------------- 43
4. 건강보험 총진료비 사례분석 ----------------------------- 49

제5장 고찰 및 결론 ----------------------------- 53
1. 고찰 ----------------------------- 53
가. 연구 요약 ----------------------------- 53
나. 연구 고찰 ----------------------------- 54
2. 결론 ----------------------------- 55

참고문헌 ----------------------------- 57
부 록 ----------------------------- 63
신현철. (202112). 데이터 예측을 위한 통계적 방법 비교 및 활용.
Appears in Collections:
HIRA 연구 > 1. 자체연구
Authorize & License
  • Authorize공개
Files in This Item:

열람하신 정보에 대해 만족하십니까?


Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.